4＂－HD－A CONE DRIVER－ 100 mm

PRESTIGE SERIES

> HD－A（High Definition Aerogel）cone Non resonant die cast chassis Ventilated chassis under spider High loss rubber suspension Edgewound，flat copper wire Kapton Voice Coil Former High loss phase plug Gold plated terminals

> Cône Haute Définition Aérogel（HD－A） Châssis Zamak moulé non résonant Fond ventilé Suspension caoutchouc amortissant Bobine sur support Kapton Fil cuivre plat sur chant Ogive non résonante Connectique plaquée or

HD－A represents a true breathrough in loudspeaker cone technology，surpassing all conventional materials being used today．Through an eatrandinary combination of newly developed makerials and processes，Audax has created an innowative composite menhrane whose properties are very close to ideal for making loudspeaker diaphragms．Ultra light． extemely rigid and maximized internal damping．This no－compromise cone is hased on a totaly controled marnx of acylic polymer gel in which an optimized proportion of Carbon and Kedar ibes are embedded．An exclusive，proprietary process acts to periectly align the fibers along the polymer chain．The procedure allows total control over the conlour and weight of the cone，while making it possible to vary the chickness of the membrane along the poofile．
This 4^{*} Midrange driver was designed lor tap range，no－compromise high end 3 or 4 －way systems，It fealures a die cast Zamak chassis with unobstructed vening for enhanced trassient response and a non esonam phase plug iof high end frequency equalization．Hysh power hardling rewils imm the flat，edgewound copper coil mounted onto a fiberglass teinforced Kapton voice coil forme．Unequaled definition is achieved over a wide spectrum of fequenciss and dynamic anges while retaining a neutral tonal balance with precise and detaled imaging．A crossover design is suggested in Fig． 1 and corresponding chart for matching this driver with a woofer in our line is provided．Easily coupled with 2nd order crossover as shown Fig 1．Two crosswer points are suggested for adequate power handling．
Le cóne HD－A constitue une véritable percee technologique dans ce domaine，supassant tous les matériaux connus à ce jour．Par une extraordinaire association drune nouvelle matière et d＇un procédé original，Audax a creé une membrane composite，innovation dont les propretés sont proches de l＇idéal pour un transducteur à radiation directe．Ultra léget，extrèmement rigide et parfaitement amoti，ce cöne sans compromis est constitué d＇une matrice controlle de gel polymère acrylique enveloppant des fibres de Carbone et de Keviar idéalement ordonées．Un procédé exclusí Audax permet un alignement optimisé des fibres dans la chaine du polymère．Le procédé procure un contrôle total du profil et du poids du cône，fout en offrant la possibilité de farie varier l＇épaisseur à chaque endroit．Ce médium de 100 mm est destiné à des systèmes 3 ou 4 voies de prestige．Il est équipé d＇un chảssis Zamak moulé à iond ventilé sous le spider ain de favoriser la meilleure réponse en transitoire et d＇une ogive non résonante atin de linéariser le haut du spectre Sa bonne tenue en puissance résulte de l＇utilisation d＇une bobine sur support Kapton renforcé fibre de verre en fil de cuivre plat sur chant．La connectique plaqué or permet une excellente soudabilié．Un shéma de filtse passebas est proposé ifig 1）pour un raccordement optimisé aux woolers de notte sére．II peut etre filtré au second orưre $112 \mathrm{~dB} / \mathrm{Oc})$ selon le shéma fig 1 ．Deux frequences de coupure sont proposées afin d＇obtenir la tenue en puissance adéquate．

SPECIFICATIONS			
Technical Characteristics	Symbol	Value	Units
PRIMARY APPLICATION			
Nominal Impedance	Z	8	Ω
Resonance Frequency	Fs	250	Hz
Nominal Power Handling	P	40	W
Sensitivity	E	93	dB
VOICE COIL			
Voice coil diameter	0	25	mm
Minimum Impedance	Zmin	7	Ω
DC Resistance	Re	6,4	Ω
Voice Coil Inductance	Lbm	0,19	mH
Voice coil Length	h	6,5	mm
Former	-	Kapton	-
Number of layers	ก	1	*
MAGNET			
Magnet dimensions	0xh	84×15	mm
Magnet weight	m	0,35	kg
Flux density	B	1,1	T
Force factor	BL	4.7	NA ${ }^{1}$
Height of magnetic gap	He	4	mm
Stray flux	Fmag	*	Am^{2}
Linear excursion	$\mathrm{X}_{\text {max }}$	$\pm 1,25$	mm
PARAMETERS			
Suspension Compliance	Cms	$0,21.10^{8}$	$\mathrm{mN}{ }^{+}$
Mechanical Q Factor	Oms	4,26	\checkmark
Electrical Q Factor	Qes	0,99	-
Total Q Factor	Qts	0,81	-
Mechanical Resistance	Rms	0,92	kg s'
Moving Mass	Mms	2,510 ${ }^{\text {a }}$	kg
Effective Piston Area	S	$0,52.10^{2}$	m^{\prime}
Volume Equivalent of Air at Cas	Vas	$0.84 .10^{3}$	m^{3}
Mass of speaker	M	1	kg

$$
\begin{array}{|c}
\text { SUGGESTED APPLICATIONS } \\
\text { meler lu page is io } 13
\end{array}
$$

APPLICATION PARAMETERS		
Fc	Crossover Frequency	Hz
S	Slope	$\mathrm{dB} / \mathrm{Oct}$.
L	Sell-inductance	mH
C	Capacitor	$\mu \mathrm{F}$
P	Nominal Power Handling	W

