## $5^{1 / 4 "}$ - HD-A CONE DRIVER - 130 mm

PRESTIGE SERIES

HD-A (High Definition Aerogel) cone Non resonant die cast chassis Ventilated chassis under spider High loss rubber suspension Edgewound, flat copper wire Kapton Voice Coil Former High loss phase plug Gold plated terminals

Cône Haute Définition Aérogel (HD-A) Châssis Zamak moulé non résonant Fond ventilé Suspension caoutchouc amortissant Bobine sur support Kapton<br>Fil cuivre plat sur chant<br>Ogive non résonante<br>Connectique plaquée or



HD-A"t represents a true breakthrough in loudspeaker cone lechnology, surpassing all conventional materials being used today, Through an extraordinary combination of newly developed materials and processes, Audax has created an innovative composite membrane whose properties are very close to ideal for making loudspeaker diaphragms. Ulita light, extremely rigid and maximized internal damping. This no-compromise cone is based on a totally controlled matrix of acrylic polymer gel in which an optimized proportion of Carbon and Kevlar fibers are embedded. An exclusive, proprietary process acts to perfectly align the fibers along the polymer chain. The procedure allows total control over the contour and weight of the cone, while making it possible to vary the thickness of the membrane along the profile.
This 51/4' Midrange driver was designed for top range, no-compromise high end 3 or 4 -way systems. It features a die cast Zamak chassis with unobstructed venting for enhanced transient response and a non resonant phase plug for high end irequency equalization. High power handling results from the flat, edgewound copper coil mounted onto a fiberglass reinforced Kapton voice coil former. Unequaled definition is achieved over a wide spectrum of frequencies and dynamic ranges while relaining a neutral tonal balance with precise and detailed imaging. A crossover design is suggested in Fig. I and corresponding chart for matching this driver with a woofer in our line is provided. Easily coupled with 2nd order crossover as shown Fig 1. Two crossover points are suggested for adequate power handling.
Le cône HD-A" constitue une véritable percée technologique dans ce domaine, surpasant tous les matériaux connus a ce jout. Par une extraordinare association đ̛une nowelle matiere et d'un procédé original, Audax a crée une membrane composite, innovation dont les propriétés sont proches de lidéal pour un transducteur à radiation directe. Ultra leger, extrèmement rigide et parfaitement amorti, ce cóne sans compromis est constitué d'une matrice contrôlee de gel polymìre acrylique enveloppant des fibres de Carbone et de Keviar idéalement ordomées. Un procédé eaclusiff Audax permet un alignement optimisé des fibres dans la chaine du polymère. Le procédé procure un contrôle total du proîl et du poids du cône, tout en offrant la possibilité de fare varier l'épaisseur à chaque endroit.Ce médium de 130 mm est destiné à des systèmes 3 ou 4 voies de prestige. Il est équipé d'un chåssis Zamak moulé à iond ventilé sous le spider afin de favoriser la meilleure réponse en transitoire et dune ogive non resonante atin de lineariser le haut du spectre. Sa bonne tenue en puissance resulte de l'utlisation d'une bobine sur support Kapton renforcé fbre de verre en fil de cuivie plat sur chant. La connectique plaque or permet une excellente soudabilite. Un shéma de filtre passe-bas est proposé (fig 1) pour un raccordement optimise aux woolers de notre série. Il peut êve filvé au second ordre ( $12 \mathrm{~dB} / \mathrm{Oc}$ ) selon le shéma Fig 1. Deux fréquences de coupure sont proposées afin d'obtenir la tenue en puissance adequate.



| SPECIFICATIONS |  |  |  |
| :---: | :---: | :---: | :---: |
| Technical Characteristics | Symbol | Value | Units |
| PRIMARY APPLICATION |  |  |  |
| Nominal Impedance | Z | 8 | $\Omega$ |
| Resonance Frequency | Fs | 68 | Hz |
| Nominal Power Handling | P | 50 | W |
| Sensitivity | E | 92 | dB |
| VOICE COIL |  |  |  |
| Voice coil diameter | 0 | 25 | mm |
| Minimum Impedance | Zmin | 6.7 | $\Omega$ |
| DC Resistance | Re | 6，4 | $\Omega$ |
| Voice Coil Inductance | Lbm | 0.22 | mH |
| Voice coll Length | h | 9 | mm |
| Former | $\cdots$ | Kapton | － |
| Number of layers | n | 1 | － |
| MAGNET |  |  |  |
| Magnet dimensions | $0 \times \mathrm{h}$ | $84 \times 15$ | mm |
| Magnet weight | m | 0.35 | kg |
| Flux density | B | 1.1 | T |
| Force factor | BL | 7.1 | $\mathrm{NA}^{-1}$ |
| Height of magnetic gap | He | 5 | mm |
| Stray flux | Fmag | － | $\mathrm{Am}^{1}$ |
| Linear excursion | Xmax | $\pm 2$ | mm |
| PARAMETERS |  |  |  |
| Suspension Compliance | Cms | 0，92．10 ${ }^{3}$ | $\mathrm{mN}{ }^{-1}$ |
| Mechanical Q Factor | Oms | 12，16 | $\bullet$ |
| Electrical Q Factor | Qes | 0，32 | － |
| Total Q Factor | Ots | 0，31 | ＊ |
| Mechanical Resistance | Rms | 0.21 | kg st |
| Moving Mass | Mms | $5,9.10^{4}$ | kg |
| Effective Piston Area | S | 0，8．10 ${ }^{\text {² }}$ | $\mathrm{m}^{2}$ |
| Volume Equivalent of Air at Cas | Vas | $8,3.10^{3}$ | $\mathrm{m}^{3}$ |
| Mass of speaker | M | 1.1 | kg |



| APPLICATION PARAMETERS |  |  |
| :---: | :---: | :---: |
| Fc | Crossover Frequency | Hz |
| S | Slope | $\mathrm{dB} /$ Oct． |
| L | Self－inductance | mH |
| C | Capacitor | $\mu \mathrm{F}$ |
| P | Nominal Power Handing | W |


| Fc | $\mathbf{S}$ | $\mathbf{L}$ | $\mathbf{C}$ | $\mathbf{P}$ |
| :---: | :---: | :---: | :---: | :---: |
| 500 | 12 | 1,2 | 42 | 70 |
| 800 | 12 | 1,2 | 26 | 110 |

