1" - TITANIUM COMPOSITE DOME - 25 mm

Replaceable voice coil assembly lon deposited pure Titanium Injected polymer face plate reinforced glass fiber High efficiency: $93 \mathrm{~dB} / \mathrm{W} / \mathrm{m}$ Ferrofluid cooled voice coil

Equipage mobile interchangeable
Titane pur déposé sous vide
Face polymère injectée renforcée fibre de verre Haut rendement : $93 \mathrm{~dB} / \mathrm{W} / \mathrm{m}$ Bobine refroidie par ferrofluide

Pure Titanium is ion deposited onto an advanced soft polymer 1" diaphragm. The composite created offers increased stiffness with high internal damping, combining advantages of pure metal domes while retaining the low distortion of soft domes. The result is a detailed and musical sound reproduction Easily coupled with 2nd order crossover as shown Fig 1. Two crossover points are suggested for adequate power handling.

Le dépôt sous vide d'une couche de Titane pur améliore la rigidité du dôme tout en préservant l'amortissement du dôme souple. Ce tweeter bénéficie ainsi d'une reproduction musicale et dynamique. Il peut être filtré au second ordre ($12 \mathrm{~dB} / \mathrm{Oct}$) selon le shéma Fig 1. Deux fréquences de coupure sont proposées afin d'obtenir la tenue en puissance adéquate.

SPECIFICATIONS			
Technical Characteristics	Symbol	Value	Units
PRIMARY APPLICATION			
Norninal Impedance	Z	8	Ω
Resonance Frequency	Fs	1500	Hz
Norninal Power Handling	P	70	W
Sensitivity	E	93	dB
VOICE COIL			
Voice coil diameter	0	25	mm
Minimum Impedance	Zmin	7	Ω
DC Resistance	Re	5,8	Ω
Voice Coil Inductance	Lbm	13	$\mu \mathrm{H}$
Voice coil Length	h	1,6	mm
Former	\cdots	Aluminium	-
Number of layers	n	2	-
MAGNET			
Magnet dimensions	Oxh	72×15	mm
Magnet weight	m	0,24	kg
Flux density	B	1,6	T
Force factor	BL	3,1	NA ${ }^{\text {a }}$
Height of magnetic gap	He	3	mm
Stray flux	Fmag	110	Am'
Linear excursion	$X_{\text {max }}$	$\pm 0,3$	mm
PARAMETERS			
Suspension Compliance	Cms	*	$\mathrm{mN}{ }^{-}$
Mechanical Q Factor	Oms	-	\cdots
Electrical Q Factor	Oes	-	*
Total Q Factor	Qts	-	\cdots
Mechanical Resistance	Rims	\cdots	$\mathrm{kg} \mathrm{s}^{\text { }}$
Moving Mass	Mms	$0,31.10^{4}$	kg
Eflective Piston Area	S	6,2.10 ${ }^{\text {+ }}$	m^{2}
Volume Equivalent of Air at Cas	Vas	\cdots	m^{3}
Mass of speaker	M	0,48	kg

SUGGESTED APPLICATIONS
reter to page 8 io 13

Fc	S	\mathbf{L}	C	P
2500	12	0,36	6,6	70
4000	12	0,2	4	120

