

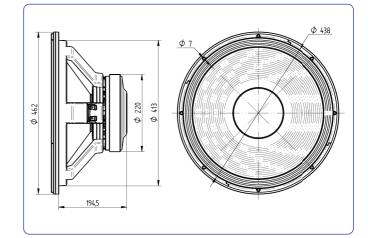
18P1000/Fe V2 LOW FREQUENCY TRANSDUCER

P1000 Series

KEY FEATURES

- High power handling: 2.400 W program power
- 4" voice coil
- High sensitivity: 98 dB
- FEA optimized magnetic circuit
- Designed with MMSS technology for high control, linearity and low harmonic distortion
- Low power compression losses
- · Waterproof cone with treatment for both sides of the cone
- CONEX spider •
- High excursion capabilities (X_{max} 8 mm) Low frequency extension and high control

TECHNICAL SPECIFICATIONS


Nominal diameter Rated impedance	460 mm	18 in 8 Ω
Minimum impedance		5,5 Ω
Power capacity*	1.200 W _{AES}	
Program power	2	2.400 W
Sensitivity	98 dB @ 1\	V @ Z _N
Frequency range	30 - 2.000 Hz	
Recom. enclosure vol.	90 / 200 3	,2 / 7 ft ³
Voice coil diameter	100 mm	4 in
Magnetic assembly weight	11,4 kg	25,1 lb
BI factor	2	6,8 N/A
Moving mass	0	,221 kg
Voice coil length		21 mm
Air gap height		12 mm
X _{damage} (peak to peak)		52 mm

THIELE-SMALL PARAMETERS**

Resonant frequency, f _s	33 Hz
D.C. Voice coil resistance, R _e	5,2 Ω
Mechanical Quality Factor, Q _{ms}	10,5
Electrical Quality Factor, Q _{es}	0,33
Total Quality Factor, Q _{ts}	0,32
Equivalent Air Volume to C _{ms} , V _{as}	230 I
Mechanical Compliance, C _{ms}	105 μm / N
Mechanical Resistance, R _{ms}	4,4 kg / s
	•
Effective Surface Area, S _d	0,1250 m ²
Maximum Displacement, X _{max} ***	8 mm
Displacement Volume, V _d	1000 cm ³
Voice Coil Inductance, L _e	1,75 mH

DIMENSION DRAWINGS

MOUNTING INFORMATION

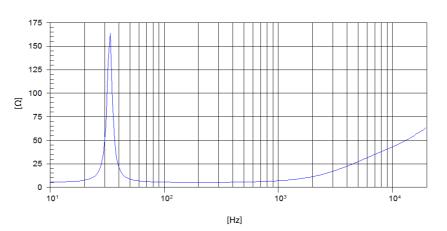
462 mm 438 mm	18,2 in 17,3 in
413 mm	16,3 in
215 mm	8,4 in
13,8 kg	30,4 lb
15,3 kg	33,7 lb
	438 mm 413 mm 215 mm 13,8 kg

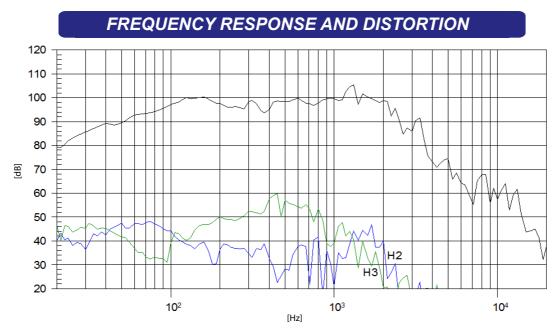
Notes

* The power capaticty is determined according to AES2-1984 (r2003) standard. Program power is defined as the transducer's ability to handle normal music program material.

** T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).

*** The X_{max} is calculated as (L_{vc} - H_{ag})/2 + (H_{ag}/3,5), where L_{vc} is the voice coil length and H_{ag} is the air gap height.




www.beyma.com

18P1000/Fe V2 LOW FREQUENCY TRANSDUCER P1000 Series

80

FREE AIR IMPEDANCE CURVE

Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m $\,$

beyma JJ

Polígono Industrial Moncada II • C/. Pont Sec, 1c • 46113 MONCADA - Valencia (Spain) • Tel.: (34) 96 130 13 75 • Fax: (34) 96 130 15 07 • http://www.beyma.com • E-mail: beyma@beyma.com •