

5" Ceramic Coaxial

Program Power 150 W Rated impedance 4 Ohm 5"- 130 mm **Nominal diameter** Sensitivity (1W/1m) 89 dB

Voice coil diameter 1 in - 25 mm

Frequency Range

SPECIFICATIONS

Nominal Diameter	5''- 130 mm
Rated Impedance	4 Ohm
Nominal Power Handling ¹	60 W
Program Power ²	150 W
Sensitivity ³	89 dB
Frequency Range ⁴	-
Minimum Impedance	-
Gasket Material	Steel
Magnet Material	Ferrite
Cone Material	-
Cone Shape	-
Surround	Polyurethane
Suspension	-
Voice Coil Diameter	1 in - 25 mm
Voice Coil Winding Material	-
Voice Coil Length	9 mm - 0,35 in
Voice Coil Former Material	Aluminum
Connection type	-
Ferrofluid	No
Magnetic Gap Height	4 mm - 0,16 in
Max. Peak to Peak Excursion	-
Efficiency Bandwidth Product EBP	169
Recommended Loading	-
Volume / Tuning frequency	-
Maximum recommended frequency	-

FREQUENCY RESPONSE AND IMPEDANCE CURVE 67

T/S PARAMETERS

4 Ohm

Resonance frequency	Fs	83 Hz
DC Resistance	Re	3,4 Ohm
Mechanical Q Factor	Qms	3,45
Electrical Q Factor	Qes	0,49
Total Q Factor	Qts	0,43
BI Factor	BI	4,59 Tm
Effective Moving Mass	Mms	5,9 g
Equivalent Cas air loaded	Vas	6,8 lt (dm³) - 0,24 cuft
Suspension Compliance	Cms	0,62 mm/N
Effective Piston Diameter	D	106 mm - 4,17 in
Effective piston area	Sd	88 cm ² - 13,64 sq in
Max. Linear Excursion ⁵	Xmax	2 mm - 0,08 in
Voice Coil Inductance @ 1kHz	Le	-
Half-space Efficency	ŋ0	0,76 %

MOUNTING AND SHIPPING INFORMATION

Overall Diameter	129,5 mm - 5,1 in
Baffle Cutout Diameter	112 mm - 4,41 in
Flange and Gasket Thickness	8 mm - 0,31 in
Total Depth	64,5 mm - 2,54 in
Bolt Circle Diameter	149 mm - 5,87 in
Bolt Holes Quantity and Diameter	4 / 5 mm - 0,2 in
Net Weight	0,98 Kg - 2,16 lb
Shipping Units	6 Pcs

NOTES

- Nominal power is determined according to AES2-1984 (r2003) standard.

 Program Power is defined as 3 dB greater than the Nominal rating.

 Sensitivity represents the averaged value of acoustic output as measured on the forward central axis of cone, at distance 1m, when connected to 2,83V sine wave test signal.

 Frequency range is given as the band of frequencies delineated by the lower and upper limits where the output level drops by 10 dB below the rated sensitivity in half space environment.

 Linear Math. Xmax is calculated as (Hvc-Hg)/2 + Hg/4 where Hvc is the coil depth and Hg is the gapdepth.

U
 Impedance curve is measured in free air conditions at small signals.