

SPECIFICATIONS

Nominal Diameter	$5^{\prime \prime}-130 \mathrm{~mm}$
Rated Impedance	8 Ohm
AES Power	125 W
Program Power ${ }^{2}$	250 W
Sensitivity ${ }^{3}$	91 dB
Frequency Range	$70-6000 \mathrm{~Hz}$
Minimum Impedance	$6,5 \mathrm{Ohm}$
Basket Material	Steel
Magnet Material	Ferrite
Cone Material	Strated Paper - Water repellent
Cone Shape	Rubber - Single Roll
Surround	-
Suspension	$1,5 \mathrm{in}-38 \mathrm{~mm}$
Voice Coil Diameter	CCAW
Voice Coil Winding Material	$11 \mathrm{~mm}-0,43 \mathrm{in}$
Voice Coil Length	-
Voice Coil Former Material	-
Connection type	No
Ferrofluid	$6 \mathrm{~mm}-0,24 \mathrm{in}$
Magnetic Gap Height	$15 \mathrm{~mm}-0,59$ in
Max. Peak to Peak Excursion	$\left.5 \div 15 \mathrm{It} \mathrm{(dm}{ }^{3}\right)-0.18 \div 0.53 \mathrm{cu} . \mathrm{ft}$
Recommended Enclousure Volume	

T/S PARAMETERS ${ }^{4}$

Resonance frequency	Fs	73 Hz
DC Resistance	Re	5.6 Ohm
Mechanical Q Factor	Qms	4,7
Electrical Q Factor	Qes	0,41
Total Q Factor	Qts	0,38
BI Factor	BI	8,5 Tm
Effective Moving Mass	Mms	$12 \mathrm{~g} \mathrm{(0,03} \mathrm{lb)}$
Equivalent Cas air loaded	Vas	$5 \mathrm{lt}\left(\mathrm{dm}^{3}\right)-0,18 \mathrm{cuft}$
Effective piston area	Sd	$95 \mathrm{~cm}^{2}-14,7 \mathrm{sq}$ in
Max Linear Excursion	Xmax ${ }^{5}$	$3,9 \mathrm{~mm}-0,15 \mathrm{in}$
	Xvar ${ }^{6}$	$4 \mathrm{~mm}-0,16$ in
Voice Coil Inductance @ 1kHz	Le	$0,37 \mathrm{mH}$
Half-space Efficency	ŋ0	0,5 \%
Efficiency Bandwidth Product	EBP	178

5' Ceramic Woofer

Program Power	250 W
Rated impedance	8 Ohm
Nominal diameter	$5^{\prime \prime}-130 \mathrm{~mm}$
Sensitivity $(2,83 \mathrm{~V} / 1 \mathrm{~m})$	$\mathbf{9 1} \mathrm{dB}$
Voice coil diameter	$1,5 \mathrm{in}-\mathbf{3 8 ~ m m}$
Frequency Range	$\mathbf{7 0 - 6 0 0 0 ~ H z}$

FREQUENCY RESPONSE CURVE ${ }^{7}$

FREE AIR IMPEDANCE CURVE ${ }^{8}$

MOUNTING AND SHIPPING INFORMATION

Overall Diameter	$153 \mathrm{~mm}-6,02 \mathrm{in}$
Baffle Cutout Diameter	$121 \mathrm{~mm}-4,76 \mathrm{in}$
Flange and Gasket Thickness	$4,8 \mathrm{~mm}-0,19 \mathrm{in}$
Total Depth	$79 \mathrm{~mm}-3,11 \mathrm{in}$
Bolt Circle Diameter	$139 \mathrm{~mm}-5,47 \mathrm{in}$
Bolt Holes Quantity and Diameter	$4 / 5 \mathrm{~mm}-0,2 \mathrm{in}$
Net Weight	$1,8 \mathrm{Kg}-3,97 \mathrm{lb}$
Shipping Weight	$2 \mathrm{Kg}-4,4 \mathrm{lb}$

NOTES

${ }^{1}$ Nominal power is determined according to AES2-1984 (r2003) standard.
${ }^{2}$ Program Power is defined as 3 dB greater than the Nominal rating.
${ }^{3}$ Sensitivity represents the averaged value of acoustic output as measured on the forward central axis of cone, at distance 1 m , when connected to $2,83 \mathrm{~V}$ sine wave test signal.
${ }^{4}$ Thiele - Small parameters are measured after the test specimen has been conditioned by 2 hour 20 Hz sine and represent the expected long term parameters after a short period of use.
${ }^{5}$ Linear Math. Xmax is calculated as ($\mathrm{Hvc}-\mathrm{Hg}$)/2 $+\mathrm{Hg} / 4$ where Hvc is the coil depth and Hg is the gapdepth.
${ }^{6}$ Xvar represents the displacement value where force factor or suspension compliance drops to 50% of their small signal value.
${ }^{7}$ Frequency response measured in 260 L reference closed box in free field (4π) with 2.83 Vrms
${ }^{8}$ Impedance curve is measured in free air conditions at small signals.

