

6201MNd

Nominal Diameter 15 " / 38 cm
Rated Impedance 8
Sensitivity 95.5 dB SPL
Power Handling Capacity 1000 W AES
SPL max (continuous) 123 dB SPL
Usable frequency range 30 - 1000 Hz
Speaker net mass 5.7 kg

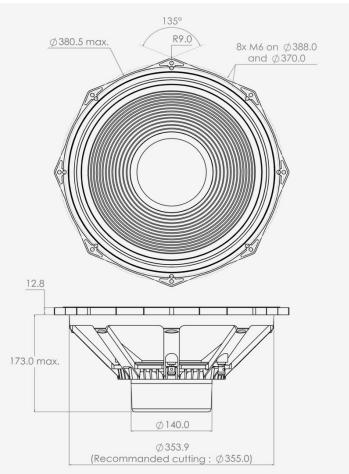
Architecture highlights:

- Ultra light injection molded Magnesium basket
- Neodymium magnet system with symmetric BL(x) and Le(x) characteristics
- Natural convection Intercooling system for noiseless sound reproduction
- Heavy duty long excursion suspension with linear behavior for large signal
- Dual side coating diaphragm for excellent sound reproduction and tropical withstanding

15 inches bass driver

Motor architecture		
Magnet material	-	Nd
Voice coil diameter	mm	101
Voice coil length	mm	26
Air gap height	mm	10

Typical characteristics


Typical characteristics			
Rated impedance	Z	Ω	8
Half space sensitivity (1W@1m)	-	dB SPL	95.5
Usable freq. range	-	Hz	30 - 1000
Power handling capacity (AES)	-	W	1000
Max Sound Pressure Level	SPL _{max}	dB SPL	123
Min. impedance modulus	Z_{min}	Ω@Hz	6.4@210
Voice-coil inductance @ 1kHz	Le _{1k}	mH	1.624
Voice-coil inductance @ 10kHz	Le _{10k}	mH	0.663
BL product	BL	N/A	25.0
Moving mass	Mms	kg	0.1500

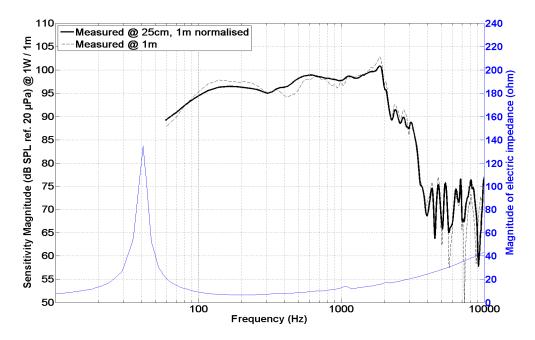
Thiele-Small parameters

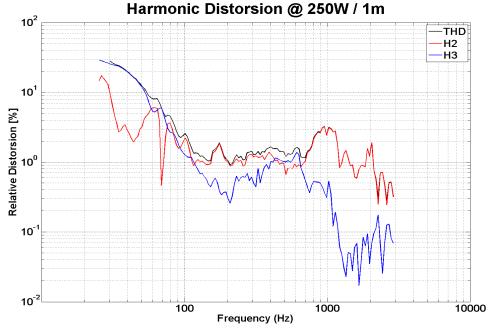
The state of the s			
Resonance frequency	Fs	Hz	36 (±5)
DC Resistance	Re	Ω	5.3 (±0.5)
Mechanical quality factor	Qms	1	5.22
Electrical quality factor	Qes	1	0.29
Total quality factor	Qts	1	0.27
Suspension compliance	Cms	10 ⁻⁶ .m/N	130
Effective piston area	Sd	m^2	0.0871
Equivalent Cas air load	Vas	m^3	0.1400
Max linear excursion	Xmax	mm	± 10.5
Linear displacement volume	Vd	10 ⁻³ .m ³	0.9145
Reference efficiency	η_0	%	2.2
Unity load volume	Vas.Qts ²	10 ⁻³ .m ³	10.4

Absolute maximum ratings

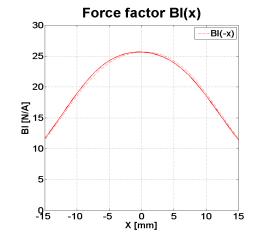
Short term max. input voltage	Vmax	V	180
Max.excursion before damage	Xdam	mm	± 19.0
Ambient operating temperature	Та	°C	-10 to +50
Storage temperature		°C	-20 to +70
Environmental withstanding			Tropical

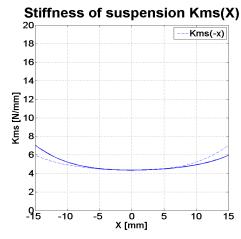
Mounting information

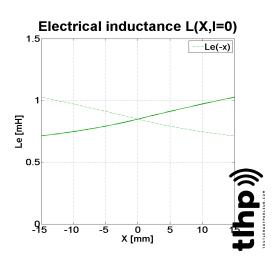

Air volume occupied by the driver	10 ⁻³ .m ³	4.20
Speaker net mass	kg	5.70
Baffle cut-out diameter (front mounting)	mm	355.0
Bolt number & Metric diameter	-	8x M6
Bolt circle diameter	mm	370 and 388
Max overall dimension (on ears)	mm	406.5
Max overall dimension (out of ears)	mm	380.5
Flange height	mm	13.0
Max magnet diameter	mm	140.0
Max depth (front mounting)	mm	173.0
Recommended reflex box	Lts / Hz	-
Electrical connection	Ø4 mm	Push bytons


SPL curves measured on CEI standard baffle :

- . at 25 cm, normalised 1 m
- . at 1 m for reference
- . Graph amplitude = 60 dB (PHL Audio standard)




HD curve measured on CEI standard baffle :


- . at 1 meter
- . at power = $P_AES/4$
- . Graph amplitude 0.01 % to 100 % (PHL Audio standard for P_AES/4)

Non linear curves measured thanks to Klippel software and hardware, in free air

