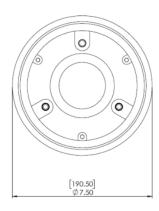
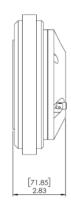
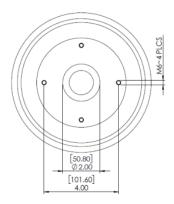
850PB-8/16 2" exit HF driver

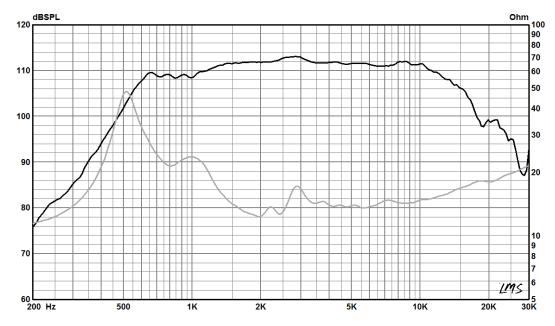
- transparent, high resolution sound
- low compression ratio phasing plug and optimized exit adapter eliminate typical compression driver distortion
- designed to withstand long term extreme stress operation with high peak factor
- ideal for touring sound, stage monitors, high performance installed and portable sound systems
- proprietary processed and hardened aerospace grade Aluminum alloy diaphragm with highest tensile strength to weight ratio guarantees long term fatigue resistance, extended HF and accurate signal peak reproduction
- heat stabilized polymer surround ensures low distortion at high SPL and long term performance stability
- high performance 76.3mm (3") edgewound ribbon wire voice coil with advanced adhesives for maximum reliability
- 200 W continuous program power
- self-aligning diaphragm assembly facilitates service in the field

SPECIFICATIONS


Nominal exit diameter	2"/51 mm
Rated impedance	8/16 Ω
Power handling ¹	100 W
Continuous program power ²	200 W
Sensitivity ³	112 dB
Rated frequency range⁴	500 Hz –20 kHz
Recommended min. XO frequency ⁴	700 Hz
Re	6.2/12.4 Ω
Minimum impedance	7.8/ 15.8 Ω
Diaphragm material	Structural Aluminum alloy
Voice coil diameter	76.2 mm (3")
Voice coil winding	Edge-wound ribbon
Voice coil wire	Copper-clad Aluminum
Voice coil former	High temperature polyimide
Magnet	Ferrite ring
Exit angle⁵	33.2°


Mounting and mechanical parameters


Mounting	4 x M6 on Ø101.6mm (4 in)
Overall diameter	190.5 mm (7.5 in)
Overall depth	71.9 mm (2.83 in)
Net weight	6.63 kg (14.6 lbs.)


Optional accessories

	1750PB-8/16 - binding posts
Replacement diaphragm assembly	1750ZT-8/16 - spade lug
	terminals

Frequency response and impedance of 850PB-16 on specified horn, free field 3.

Specifications notes

- 1. AES2-1984 Rev.2003. Tested using XO with 24dB/oct. slope @ 1.0 kHz.
- 2. Continuous program power is defined at 3dB higher than AES power and reflects power handling capacity for typical music and cinema content reproduction.
- 3. Driver mounted on horn with 90°x60° nominal coverage and following dimensions: 229 mm (9") mouth width, 191 mm (7.5") mouth height, 185mm (7.3") horn depth. Measured at 1W/1m in simulated free field conditions as per AES 2-2012 and IEC 60268-5 (Ed.3.1 2007-09). Sensitivity is calculated based on SPL frequency response at 1W/1m, averaged in 1.0 kHz 5 kHz band.
- 4. Specified in accordance with IEC 60268-5 (Ed. 3.1 2007-09). Defines lowest recommended operating frequency band for typical application with 24 dB/Oct. high pass filter. If lower filter slope rate is used, a higher XO point is recommended. Higher XO frequency is recommended, if higher max SPL is required.
- 5. Total flare angle of conical exit. The angle should be considered for proper coupling with a waveguide/horn. The waveguide/horn throat expansion angle and shape should provide smooth continuity of mated surfaces for best results. The driver exit angle and its integration with a horn will also affect dispersion at very high frequencies.